ru : ua

Календари и часы: от древности к нашим дням

Время - это самый важный и невосполнимый ресурс любого человека. Более 4 тысяч лет люди пытаются как-то вести учет времени, создавая различные календарные системы и устройства измерения времени. Календарные системы древнего мира отражали сельскохозяйственные, политические и ритуальные нужды, характерные для того времени. Астрономические наблюдения для установления зимнего и летнего солнцестояния производились еще 4000 лет тому назад, поэтому не удивительно, что первые календари использовали астрономические явления для фиксации периодов времени. В 14-ом столетии до Рождества Христова в Китае была определена длительность солнечного года - 365,25 дней, а лунный месяц - 29,5 дней. Солнечно-лунный календарь действовал на ближнем востоке (за исключением Египта) и в Греции, начиная с 3-го тысячелетия до нашей эры. Ранние календари использовали либо 13 лунных месяцев по 28 дней или 12 месяцев с чередующейся протяженностью 29 и 30 дней.

Древнеегипетский календарь имел 12 30-ти дневных лунных месяцев, но был привязан к сезонному появлению звезды Сириус. Для того чтобы примирить этот календарь с солнечным годом, был изобретен гражданский календарь, в котором добавлено 5 дней, доводящих длительность года до 365 дней. Однако со временем было замечено, что гражданский год примерно на одну четверть дня короче, чем солнечный год. Выбранная длительность года обеспечивала полное совпадение с солнечным годом раз за 1460 лет. Этот период называется циклом Сотиса (sothic). Древние египтяне установили длительность солнечного года равной 365,25 дней, что с точностью в 11 минут совпадает с результатами современных вычислений. В 432 году до рождества Христа, около столетия после китайцев греческий астроном Метон вычислил, что 110 лунных месяцев по 29 дней и 125 лунных месяцев по 30 дней соответствуют 6940 солнечным дням, что лишь немного превышает 19 лет. 19-летний цикл, названный циклом Метона, установил длительность лунного месяца равной 29,532 солнечных дней, что с точностью 2 минут совпадает результатами современных измерений.

В древнем Риме использовался лунный календарь. Юлий Цезарь пригласил александрийского астронома Сосигенса, который разработал календарь (который позднее стал называться юлианским), принятый в 46 году до Рождества Христова. Календарь содержал 365 дней в году с добавлением одного дня каждые 4 года (високосный год). Однако первые 36 лет по ошибке дополнительный день добавлялся каждые 3 года. В результате набежало лишних три дня, которые пришлось компенсировать вплоть до 8 года нашей эры.

Во время романской эры 15-летний цикл переписи использовался при исчислении налогов. Последовательность имен дней недели воспроизводится через 28 лет, этот период называется солнечным циклом. Таким образом, учитывая 28-летний солнечный цикл, 19-летний цикл Метона и 15-летний переписи, получаем суперцикл протяженностью 7980-лет, называемый юлианской эрой, которая начинается в 4713 году до рождества христова.

К 1545 году расхождение между юлианским календарем и солнечным годом достигло 10 дней. В 1582, астрономы Кристофер Клавиус и Луиджи Лилио предложили новую схему календаря. Папа Грегорий XIII выпустил указ, где среди прочего указывалось, что в году содержится 365,2422 дней. Для того чтобы более точно аппроксимировать эту новую величину, только столетние годы, которые делятся без остатка на 400, объявляются високосными, что предполагает длительность года 365,2425 дней. В настоящее время григорианский календарь принят большинством стран мира.

Все это разнообразие календарей привело к тому, что созрела необходимость иметь стандартную и точную схему нумерации дней. По решению Международного астрономического Союза был принят стандарт на секунду и юлианская система нумерации дней (JDN). Стандартный день содержит 86,400 стандартных секунд, а стандартный год состоит из 365,25 стандартных дней.

В схеме JDN, предложенной в 1583 французским ученым Джозефом Юлиусом Скалигером, JDN 0.0 соответствует 12 часам (полдень) первого дня юлианской эры - 1 января 4713 до нашей эры. Годы до нашей эры подсчитываются согласно юлианскому календарю, в то время как годы нашей эры нумеруются по григорианскому календарю. 1 января 1 года после рождества христова в григорианском календаре соответствует 3 января 1 года юлианского календаря, в JDN 1721426 день соответствует 12 часам первого дня нашей эры.

В зависимости от того, какие процессы, влияющие на шкалу всемирного времени, учитываются при ее построении, различаются три системы всемирного времени:

Шкалу времени UT2 можно считать достаточно равномерной на протяжении года или нескольких лет. Но через несколько десятилетий ее равномерность будет нарушена вследствие медленных вековых и нерегулярных изменений в скорости вращения Земли. Поэтому шкала всемирного времени непригодна для построения теорий движения планет и их спутников. В уравнения движения небесных тел как независимый аргумент входит эфемеридное время ЕТ (Ephemeris Time). Это-равномерно текущее время ньютоновой механики. Шкала эфемеридного времени задается орбитальным движением тел Солнечной системы. Основная единица измерения эфемеридного времени - тропический год в фундаментальную эпоху в 1900, то есть промежуток времени между последовательными прохождениями центра истинного Солнца через среднюю точку весеннего равноденствия в эпоху 1900 г. Эфемеридная секунда равна 556925,9477 части тропического года для начальной эпохи. Эфемеридные сутки содержат 86400 эфемеридных секунд.

Так как предвычисленные положения небесных тел привязаны к эфемеридному времени, а наблюдаемые - к всемирному времени, сопоставление тех и других положений позволяет вычислить разность эфемеридного и всемирного времени. Различие между этими шкалами объясняется в основном вековым замедлением вращения Земли. С 1903 по 1977 год это различие достигло почти 49 с. Точные значения разности эфемеридного и всемирного времени могут быть получены лишь с большим опозданием для прошедших моментов времени.

Эталон времени

Эталоном времени может стать любой циклический процесс с достаточно стабильным периодом. Для измерения времени сначала использовали солнечные часы (Вавилон, 3,5 тысячи лет назад), которые были пригодны только днем при безоблачном небе. Им на смену пришли водяные часы, способные работать круглые сутки (если позволял объем сосуда). Позднее были изобретены песочные часы (появились примерно тысячу лет назад), которые могли обеспечить точность около 15-20 минут за сутки. Революцию в сфере измерения времени вызвало изобретение механических часов (Вестмистерские куранты 1288 год). Первые часы с маятником были изготовлены Х. Гюйгенсом в 1657 году, через 13 лет был изобретен анкерный механизм. Механическим хронометрам человечество обязано великим географическим открытиям 18 века (Дж. Кук). Первые часы с использованием электричества был разработаны А. Бейном в 1840 году, а первые кварцевые часы увидели свет в 1918 году. В 1937 году кварцевые часы Л. Эссена были установлены в Гринвичской лаборатории (GMT), они имели точность 2 мс в сутки. В 1944 году радиостанция BBC стала передавать сигналы точного времени с погрешностью около 0,1 мс/сутки. Сейчас кварцевые часы можно увидеть на запястьях людей и в любом компьютере. Первые атомные часы были изготовлены в 1949 году. Без этих технологических свершений технический прогресс 20-го века был бы невозможен.

В 1967 г. в бюро мер и весов (BIPM, Bureau International des Poids et Mesures) был принят цезиевый (Cs133) эталон времени: секундой называется интервал между 9 192 631 770 межуровневыми переходами атома Cs133 (цезий-133). Число переходов выбрано для соответствия со средним солнечным временем). Эталонные часы, хранимые в BIPM, постоянно сверяются с около двумястами атомными часами в национальных лабораториях на всех континентах, что гарантирует сохранение эталонного точного времени даже в случае каких-либо глобальных катастроф. Это эталонное время называют международным атомным временем - TAI (Temps Atomique International). Именно с этим временем скоординированы спутники, например спутники глобальной системы позиционирования (GPS, Global Positioning System), передающие сигналы точного времени во все точки планеты. Ошибка данного эталона времени составляет порядка 0,3 нс/сутки.

Не исключено, что со врменем эталоном времени станет излучение миллисекундного пульсара (открыт в 1982 году), имеющего период 1,55780645169838 мс. Этот пульсар предположительно имеет массу Солнца, радиус 10 км и вращается со скоростью 642 оборота в секунду.

С 1 января 2001 года английским правительством было официально объявлено о новом стандарте времени Grinwich e-time (GET), который будет использоваться для обеспечения глобальных электронных платежей через Интернет.

Калиброванный эталон времени, например атомные часы, довольно сложное и дорогостоящее устройство, требующее квалифицированного обслуживания. По этой причине многие пользователи не могут позволить себе такие издержки и вынуждены обращаться к услугам удаленных эталонов. Это может быть первичный эталон, размещенный где-то в локальной сети, или радио-часы. Условия доступа к сети уже предполагают наличие определенной дисперсии для времени доставки калибровочной информации. Если же эталон размещен далеко в Интернет, значения задержки и дисперсии могут возрасти многократно. Для обеспечения большей надежности калибровки обычно используют несколько эталонов, а для снижения влияния временных разбросов привлекают довольно сложные алгоритмы усреднения.

"Дополнительное" время

Атомные часы позволили создать очень стабильную и равномерную шкалу времени. Но продолжительность суток, как мы уже говорили, меняется, поэтому ход атомных часов не совпадает с ходом земных. Расхождение между атомной и всемирной шкалами времени составляет примерно секунду в год. Аналогичная проблема существует и в календарном счете времени. Год не равен целому числу суток, но мы хотим, чтобы год "шел в ногу" с календарем. Прибавляя в високосном году один день к календарю, можно поддерживать соответствие между календарем и временами года. Для согласования физической шкалы атомного времени TAI вначале изменяли продолжительность секунды. Секунда была "резиновой", но это оказалось неудобно, поэтому была введена шкала координированного времени UTC (Universal Time Coordination, Temps Universel Coordonné), включающая в себя понятие "дополнительной секунды". Кстати, вопреки расхожему заблуждению, название UTC не является аббревиатурой ни на английском, ни на французском языках.

С 1 января 1972 года большая часть сигналов точного времени стала передаваться в шкале UTC. Началу передач предшествовало согласование шкал атомного и всемирного времени. Дело в том, что в 1971 году расхождение между ними достигло 10 с. Поэтому в конце 1971 года была проведена специальная коррекция сигналов точного времени таким образом, что по шкале всемирного координированного времени отсчет 1972 год, январь 1, 00:00:00 соответствовал моменту атомного времени Международного бюро времени 1972 года, январь 1, 00:00:10. Было принято за правило, что разность между координированным временем и атомным не должна превышать 0,75 - 0,9 с. Приблизительная величина разности UT1-UTC определяется заранее и сообщается всем радиостанциям, передающим сигналы времени, за месяц вперед. Когда разность UT1-UTC достигает 0,75 - 0,9 с, Международное бюро времени объявляет о введении дополнительной секунды (положительной или отрицательной), и шкала UTC смещается точно на одну секунду. Обычно это происходит 31 декабря или 30 июня:

на главную страницу